Phytochemical Accumulation in Photomorphogenesis of Peppermint

Main Article Content

Semra Kilic Onur Tarakci

Abstract

The production of phytochemicals due to biotic and abiotic factors are a result of the changes in growth parameters of the plant. Changes in the intensity and quality of light results in alterations of several biochemical and physiological processes of plants and manifests as changes in morphological and anatomical parameters. The relationship between phytochemicals production of peppermint and its growth responses under different photoperiods was determined. Photoperiod significantly affected the number and size of both stomata and capitate and peltate trichomes in leaves. This effect different photoperiod resulted in different numbers of peltate trichomes and different capitate trichome sizes between same surfaces of different leaves and between different surfaces of the same leaf. As a result, we found that the most suitable photoperiod (8 h light / 16 h dark), which improves the amount and content of phytochemicals with parameters changing coordinated with photoperiod change in phytochemical synthesis metabolism of Peppermint.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kilic, S., & Tarakci, O. (2018). Phytochemical Accumulation in Photomorphogenesis of Peppermint. Advances in Agricultural Science, 7(1), 116-131. Retrieved from http://aaasjournal.org/submission/index.php/aaas/article/view/130
Section
Articles

References

Amoozgar, A., Mohammadi, A., Sabzalian, M. R., 2017. Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica 55, 85-95.
Anjum, S., Abbasi, B. H., Doussot, J., Favre-Réguillon A., Hano, C., 2017. Effects of photoperiod regimes and ultraviolet-C radiations on biosynthesis of industrially important lignans and neolignans in cell cultures of Linum usitatissimum L.(Flax). J. Photoch. Photobio. B. 167, 216-227.
Arena, C., Tsonev, T., Doneva, D., De Micco, V., Michelozzi, M., Brunetti, C., Centritto, M., Fineschi, S., Velikova, V., Loreto, F., 2016. The effect of light quality on growth, photosynthesis, leaf anatomy and volatile isoprenoids of a monoterpene-emitting herbaceous species (Solanum lycopersicum L.) and an isoprene-emitting tree (Platanus orientalis L.). Environ. Exp. Bot. 130, 122-132.
Ascensão, L., Pais, M. S., 1998. The leaf capitate trichomes of Leonotis leonurus: histochemistry, ultrastructure and secretion. Ann. Bot. 81, 263-271.
Baird, A. S., Anderegg, L. D., Lacey, M. E., HilleRisLambers, J., Van Volkenburgh, E., 2017. Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiol. 1-11.
Bian, Z., H., Yang, Q. C., Liu, W. K., 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J. Sci. Food Agric. 95,
Búfalo, J., Rodrigues, T. M., De Almeida, L. F. R., Dos Santos Tozin, L. R., Marques, M. O. M., Boaro C. S. F., 2016. PEG-induced osmotic stress in Mentha x piperita L.: structural features and metabolic responses. Plant Physiol. Biochem. 105, 174-184.
Cio?, M., Szewczyk, A., ?upnik, M., Kalisz, A., 2017. Paw?owska, B., LED lighting affects plant growth, morphogenesis and phytochemical contents of Myrtus communis L. in vitro. Plant Cell Tissue Organ Cult. 1-15.
Choi, H. G., Moon, B. Y., Kang N. J., 2017. Correlation between strawberry (Fragaria ananassa Duch.) productivity and photosynthesis-related parameters under various growth conditions. Front. Plant Sci. 2016, 7.
Craver, J. K., Gerovac, J. R., Lopez, R. G., Kopsell D. A., 2017. Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within Brassica microgreens. J. Am. Soc. Hortic. Sci. 142, 3-12.
Fazal, H., Abbasi, B. H., Ahmad, N., Ali, M., Ali S., 2016. Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell Tissue Organ Cult. 124, 573-581.
Gao, Q., Kane, N. C., Hulke, B., Reinert, S., Pogoda, C., Tittes, S., Prasifka, J. ,2017. Genetic architecture of capitate glandular trichome density in florets of domesticated sunflower (Helianthus annuus L.). Front. Plant Sci. 8, 2227.
Greenham, K., McClung, C.R., 2015. Integrating circadian dynamics with physiological processes in plants. Nat. Rev. Genet. 16, 598–610.
Gu, J., Zhou, Z., Li, Z., Chen ,Y., Wang, Z., Zhang, H., Yang J., 2017. Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Front. Plant Sci. 8, 1082.
Gupta, O. P., Karkute, S. G., Banerjee, S., Meena, N. L., Dahuja, A., 2017. Contemporary understanding of mRNA-based regulation of secondary metabolites biosynthesis in plants. Front. Plant Sci. 8, 374.
Holopainen, J. K., Kivimäenpää, M., Julkunen-Tiitto, R., 2018. New light for phytochemicals. Trends Biotechnol. 36, 7-10.
Horrer, D., Flütsch, S., Pazmino, D., Matthews, J.S., Thalmann, M., Nigro, A., Leonhardt, N., Lawson, T., Santelia, D., 2016. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr. Biol. 26, 362–370.
Ishihara, H., Obata, T., Sulpice, R., Fernie, A.R., Stitt M., 2015. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13 CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. Plant Physiol. 168, 74–93.
Jung, E. S., Lee, S., Lim, S. H., Ha, S. H., Liu, K. H., Lee, C. H., 2013. Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Sci. 210, 61-69.
Junker, R. R., Kuppler, J., Amo, L., Blande, J. D., Borges, R. M., Dam N. M., 2017. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco?evolutionary implications. New Phytol.. https://doi.org/10.1111/nph.14505
Khan, M.A, Abbasi, B.H, Ahmed, N., Ali, H., 2013. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod. 46, 105–110.
Lacube, S., Fournier, C., Palaffre, C., Millet, E. J., Tardieu, F., Parent, B., 2017. Distinct controls of leaf widening and elongation by light and evaporative demand in maize. Plant Cell Environ. 40, 2017-2028.
Liu, Z., Qi, J. L., Chen, L., Zhang, M. S., Wang, X. Q., Pang, Y. J., Yang, Y. H., 2006. Effect of light on gene expression and shikonin formation in cultured Onosma paniculatum cells. Plant Cell Tissue Organ Cult. 84, 38.
Lu, N., Bernardo, E. L., Tippayadarapanich, C., Takagaki, M., Kagawa, N., Yamori, W., 2017. Growth and accumulation of secondary metabolites in Perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front. Plant Sci. 8, 708.
Ma, X., Song, L., Yu, W., Hu, Y., Liu, Y., Wu, J., Ying, Y., 2015. Growth, physiological, and biochemical responses of Camptotheca acuminata seedlings to different light environments. Front. Plant Sci. 6, 321.
McAusland, L., Vialet?Chabrand, S., Davey, P., Baker, N. R., Brendel, O., Lawson, T., 2016. Effects of kinetics of light?induced stomatal responses on photosynthesis and water?use efficiency. New Phytol. 211, 1209-1220.
Miyagi, A., Uchimiya, H., Kawai-Yamada M., 2017. Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory. Food Chem. 218: 561-568. https://doi.org/10.1016/j.foodchem.2016.09.102
Moon, H-K., Hong, S-P., Smets, E., Huysmans, S., 2009. Phylogenetic significance of leaf micromorphology and anatomy in the tribe Mentheae (Nepetoideae: Lamiaceae). Bot. J. Linn. Soc. 160, 211–231.
Mucciarelli, M., Scannerini, S., Bertea, C., Maffei, M., 2003. In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol. 158, 579-591.
Ohara, T., Satake, A., 2017. Photosynthetic entrainment of the circadian clock facilitates plant growth under environmental fluctuations: perspectives from an integrated model of phase oscillator and phloem transportation. Front. Plant Sci. 8, 1859.
Ort, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. 112, 8529–8536.
Pandey, S.K., Singh, H., 2011. A simple, cost-effective method for leaf area estimation. J. Bot. 2011, 6.
Puglielli, G., Varone, L., Gratani, L., Catoni, R., 2017. Specific leaf area variations drive acclimation of Cistus salvifolius in different light environments. Photosynthetica 55, 31-40.
Rengifo, E., Urich, R., Herrera, A., 2002. Water relations and leaf anatomy of the tropical species, Jatropha gossypifolia and Alternanthera crucis, grown under elevated CO2 concentration. Photosynthetica 40, 397-403.
Rohloff, J. 1999. Monoterpene composition of essential oil from peppermint (Mentha× piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J. Agric. Food Chem. 47, 3782-3786.
Robertson, F.C., Skeffington, A.W., Gardner, M.J., Webb, A.A., 2009. Interactions between circadian and hormonal signalling in plants. Plant Mol. Biol. 69, 419–427.
Shao, Q.S., Wang, H.Z., Guo, H.P., Zhou, A.C., Huang, Y.Q., Sun, Y.L., Li, M.Y., 2014. Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS One 9, 1-10.
Sallaud, C., Giacalone, C., Töpfer, R., Goepfert, S., Bakaher, N., Rösti, S., Tissier, A., 2012. Characterization of two genes for the biosynthesis of the labdane diterpene Z?abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J. 72, 1-17.
Santoro, M.V., Nievas, F., Zygadlo, J., Giordano, W., Banchio, E., 2013. Effects of growth regulators on biomass and the production of secondary metabolites in peppermint (Mentha piperita) micropropagated in vitro. Ame. J. Plant Sci. 4, 49–55.
Slattery, R. A., VanLoocke, A., Bernacchi, C. J., Zhu, X. G., Ort, D. R., 2017. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front. Plant Sci. 8, 549.
Souza, M. A. A. D., Santos, L. A. D., Brito, D. M. D., Rocha, J. F., Castro, R. N., Fernandes, M. S., Souza, S. R. D., 2016. Influence of light intensity on glandular trichome density, gene expression and essential oil of menthol mint (Mentha arvensis L.). Essential Oil Res. 28, 138-145.
Taulavuori, K., Hyöky, V., Oksanen, J., Taulavuori, E., Julkunen-Tiitto, R., 2016. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ. Exp. Bot. 121, 145-150.
Taulavuori, K., Pyysalo, A., Taulavuori, E., Julkunen-Tiitto, R., 2018. Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environ. Exp. Bot. 150, 183-187.
Turner, G. W., Gershenzon, J., Croteau, R. B., 2000. Development of peltate glandular trichomes of peppermint. Plant Physiol. 124, 665-680.
Ventura?Aguilar, R. I., Rivera?Cabrera, F., Méndez?Iturbide, D., Pelayo?Zaldívar, C., Bosquez?Molina, E., 2013. Enzymatic and non?enzymatic antioxidant systems of minimally processed cactus stems (Opuntia ficus?indica Mill.) packaged under modified atmospheres. I.J.F.S.T. 48, 2603-2612.
Voirin, B., Bayet, C., 1996. Developmental changes in the monoterpene composition of Mentha x piperita leaves from individual peltate trichomes. Phytochemistry 43, 573-580.
Wagner, G. J., Wang, E., Shepherd, R. W., 2004. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 93, 3.
Yang, W., Liu, Y., Fang, S., Ding, H., Zhou, M., Shang, X., 2017. Variation in growth, photosynthesis and water-soluble polysaccharide of Cyclocarya paliurus under different light regimes. I.F.O.R.E.S.T. 10, 468.
Zhang, D. W., Yuan, S., Xu, F., Zhu, F., Yuan, M., Ye, H. X., Lin, H. H., 2016. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. Plant Cell Environ. 39, 12-25.
Zheng, L., Van Labeke, M. C., 2017. Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality. Plant Physiol. 213, 66-74.
Zhu, X., Chen, J., Qiu, K., Kuai, B., 2017. Phytohormone and light regulation of chlorophyll degradation. Front. Plant Sci. 8, 1911.